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Abstract

The ��calculus o�ers an attractive basis for concurrent programming� It is small� elegant� and well stud�
ied� and supports �via simple encodings� a wide range of high�level constructs including data structures�
higher�order functional programming� concurrent control structures� and objects� Moreover� familiar
type systems for the ��calculus have direct counterparts in the ��calculus� yielding strong� static typing
for a high�level language using the ��calculus as its core� This paper describes Pict� a strongly�typed
concurrent programming language constructed in terms of an explicitly�typed ��calculus core language�

Dedicated to Robin Milner on the occasion of his ��th birthday�

� Introduction

Milner� Parrow� and Walker�s ��calculus �MPW��� Mil��� generalizes the channel�based communication of
CCS and its relatives by allowing channels to be passed as data along other channels� This extension
introduces an element of mobility� enabling the speci	cation and veri	cation of concurrent systems with
dynamically evolving communication topologies� Channel mobility leads to a surprising increase in expressive
power� yielding a calculus capable of describing a wide variety of high�level concurrent features while retaining
a simple semantics and tractable algebraic theory�

A similar combination of simplicity and expressiveness has made the ��calculus both a popular object of
theoretical investigation and an attractive basis for sequential programming language design� By analogy�
then� one may wonder what kind of high�level programming language can be constructed from the ��calculus�
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A number of programming language designs have combined ��calculus�like communication with a functional
core language� but none have gone so far as to take communication as the sole mechanism of computation�
The primary motivation of the Pict project� begun at the University of Edinburgh in ����� was to design
and implement a high�level concurrent language purely in terms of the ��calculus primitives �PT��� Pie����

Compiling a language based solely on communicating processes raises challenging code generation prob�
lems� To achieve acceptable performance for realistic applications� a ��calculus compiler must implement
process creation� context switching� and communication on channels extremely e
ciently� since these oper�
ations are the fundamental computational mechanism used in the ��calculus and� for example� are at least
as pervasive as function calls in a functional language�

Another goal of the Pict project was to explore the practical applicability of our earlier theoretical work
on type systems for the ��calculus �PS��� Tur��� and on ��calculus type systems with subtyping �PT���
HP��� PS���� In particular� in �PT��� we proposed a powerful combination of subtyping and polymorphism
as a basis for statically typed object�oriented programming in functional languages� equipping Pict with
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a similar type system provides a testbed for experiments with statically typed concurrent objects� Using
such a powerful type system raises other important issues such as typechecking algorithms� e
ciency of
typechecking� and type inference�

The questions motivating the Pict project� then� can be summarized as follows� ��� What is it like to
program in the ��calculus� What kind of high�level language can be built on it� ��� What kinds of concurrent
objects arise in this setting� ��� Can the ��calculus be implemented e
ciently� ��� Can we design a practical
type system for the ��calculus combining subtyping and higher�order polymorphism�

In this paper� we o�er our responses to these questions �concentrating on ��� and ���� since ��� has been
addressed in detail in �PT��� and ��� in �Tur����� and survey the current state of the Pict language� Section �
de	nes the syntax and operational semantics of the core language and discusses some points where it di�ers
from the theoretical ��calculus of Milner� Parrow� and Walker� Section � presents a type system for the
core language� incorporating channel types� subtyping� record types� higher�order polymorphism� and simple
recursive types� Section � constructs the full Pict language by means of translations into the core� Section �
o�ers concluding remarks and directions for further research�

Please note that we do not attempt to give a de	nitive description of Pict here� since Pict is an ex�
perimental language and is therefore subject to relatively frequent changes in design� Instead� we give an
overview of the main decisions we have made in the design of Pict� For a complete description of the current
version of Pict� please consult the formal de	nition �PT���� which is kept up to date with the current version
of the compiler�

� The Core Language

We now proceed to a rigorous de	nition of the syntax and semantics of the core language� an asynchronous�
choice�free fragment of the ��calculus enriched with records and pattern matching�

��� The Pi	Calculus

To aid comparison� we begin with a brief review of the pure ��calculus of Milner� Parrow� and Walker� More
details can be found in the original ��calculus papers �MPW��� and in Milner�s tutorial �Mil����

The computational world modeled by the ��calculus contains just two kinds of entities� processes and
channels� Processes� sometimes called agents� are the active components of a system� they interact by
synchronous rendezvous on channels� also called names or ports� When two processes synchronize� they
exchange a single data value� which is itself a channel� The output process �xy�e� sends y along x and then�
after the output has completed� continues as e�� Conversely� the input process x�z��e� waits until a value is
received along x� substitutes it for the bound variable z� and continues as e�� The parallel composition of
these processes� written �xy�e� j x�z��e�� may thus synchronize on x� yielding the derivative e� j fz �� yge��

Fresh channels are introduced by the restriction operator �� The expression ��x�e creates a fresh channel
x with lexical scope e� For example� writing ��x� ��xy�e� j x�z��e�� localizes the channel x� ensuring that no
other process can interfere with the communication on x�

The expression e� � e� denotes an external choice between e� and e�� either e� is allowed to proceed
and e� is discarded� or vice versa� For example� the process �xy�e� j �x�z��e� � x�w��e�� can reduce either to
e� j fz �� yge� or to e� j fw �� yge�� The nullary choice� written �� is inert�

In	nite behavior in ��calculus is introduced by the replication operator �e� which informally denotes an
arbitrary number of copies of e running in parallel� This operator replaces the equivalent� but more complex�
mechanism of mutually�recursive process de	nitions�

Some variants of the ��calculus include a matching operator �x 
 y�e� which allows e to proceed if x and
y are the same channel�

��� Core Language Design Issues

The core language of Pict di�ers from the ��calculus by some trivial extensions and some more important
restrictions�
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��
 Primitive Values

Like most high�level programming languages� Pict provides special syntax for a few built�in types� booleans�
characters� strings� and integers� Adding such syntax does not change the fundamental character of the
language at all� since all these types of data can easily be encoded as processes �Mil���� To give the compiler
maximum freedom to implement primitive values e
ciently� the types Bool� Char� String� and Int are
abstract� they reveal nothing about how values of these types are represented� Instead� built�in channels are
provided for performing common operations� For example� �� is a built�in value of type Int and the addition
operation is represented as a built�in channel �� To add two numbers� we send them along the channel �
together with a result channel r� and then listen on r for the result of the calculation� Built�in channels are
also provided for interacting with the environment� for example� the channel print is used to send strings
to the standard output stream�

����� Records and Pattern Matching

A key choice in the design of Pict has been to de	ne as much of the language as possible in terms of encodings�
Section � describes many such derived forms� including� for example� function abstraction and application�
This style of de	nition means that we need only give operational semantics and typing rules for the core
language� the rules for functions arise from the translation�

The pure ��calculus can easily encode �polyadic� communication� in which several channels are exchanged
during a single communication �Mil���� Similar encodings can be used for data structures such as records�
However� such encodings do not always give rise to useful derived typing rules� In particular� when we started
the Pict design� there were no type systems for the pure� monadic ��calculus �although more recent work on
linear types �KPT��� may lead to such type systems�� Therefore� we begin from a slightly more structured
core language� which admits a simple� structural type system � just as typed functional languages such as
ML and Haskell are typically based on a ��calculus extended with basic data constructors�

����� Asynchrony

The fundamental communication primitive in ��calculus and most of its relatives is synchronous rendezvous�
in which both sender and receiver are blocked until the communication occurs� For example� in the ��calculus
expression �xy�e� j x�z��e�� the expression e� cannot proceed until the output on x has completed� similarly�
the expression e� cannot proceed until a value z has been received along x�

The fact that output is synchronous enables a sending process to tell when its message has been received
by another process� Unfortunately� depending on this information precludes a number of useful programming
idioms involving bu�ering� delegation� and reordering of requests� For example� if a client and a server are
sometimes run on separate machines� we may need to add a surrogate server process on the client�s machine
that forwards requests to the server�s machine� Now a synchronization on the client�s request channel
indicates only that the surrogate� not the server� has received the request�

We allow only asynchronous output in Pict� this amounts to restricting the �continuation� of each output
expression to the null process� The programmer must send an explicit acknowledgement or result to inform
the client that its request has been processed� thereby eliminating any possible sensitivity to bu�ering or
reordering of requests�

The investigation of asynchronous process calculi was initiated by Honda� Tokoro� and Yoshida �HT���
HY��� and Boudol �Bou���� Amadio� Castellani and Sangiorgi �ACS��� have more recently shown how several
technical aspects of observational equivalence are simpli	ed in the asynchronous case�

����� No Choice

Early versions of the ��calculus used a completely unrestricted choice operator� in the expression e��e�� the
branches e� and e� could be arbitrary processes� More recent presentations� for example �Mil���� use a more
constrained operator called guarded choice� where e� and e� must be input expressions� output expressions� or
choice expressions� Guarded choice is easier to formalize �especially in the context of a reduction semantics�
such as the one presented in Sections ��� to ���� and appears to capture all cases of practical interest�
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In an asynchronous language� guarded choice should be restricted still further� since an asynchronous
output in a choice is sensitive to bu�ering� � �wy � e� can only discard e if a process reads from w� while
��xy � e� j x�z�� �wz can reduce spontaneously to �wy�

In Pict we go a step further� dropping the choice operator altogether� This simpli	es both formal
semantics and implementation� and has little e�ect on the expressiveness of the language� since input�only
choice is easy to implement as a library module �PT��� NP���� �This has some cost in syntactic convenience�
and some bene	t in �exibility� Our library actually implements a subset of Reppy�s events �Rep���� allowing
the branches of a choice to be manipulated as data�� In fact� most Pict programs use simpler mechanisms
such as locks and semaphores �cf� Section ���� for basic synchronisation tasks� For controlling concurrent
execution of methods in objects� one can use a di�erent library implementing a more specialized operator
called replicated choice �PT����

����� Replicated Input� No Matching

The Pict core language makes two further simpli	cations of the pure ��calculus� First� we restrict replication
to replicated input expressions� This variant has the same formal power as full replication� but has a simpler
semantics and is closer to a realistic implementation� Second� we omit the matching operator� since its main
functions �encoding conditional expressions and tracking side�conditions in axiomatizations of behavioral
equivalences� are either subsumed by other features in Pict or irrelevant in the context of programming�

����� Ascii Notation

Besides the more substantive changes discussed above� Pict substitutes a slightly heavier ascii concrete syntax
for the more mathematical ��calculus notation�

��calculus Pict
�xy�� x�y asynchronous output
x�y��e x�y � e input pre	x
e� j e� �e� � e�� parallel composition
��x�e �new x e� channel creation
�x�y��e x�	y � e replicated input

��� Core Language Syntax

We now de	ne the Pict core language syntax� Further details� such as lexical analysis rules� can be found
in the Pict language de	nition �PT���� The possible forms of each production are listed on successive lines�
Keywords are set in typewriter font� An expression of the form X � � � X denotes a list of zero or more
occurrences of X� The expression hemptyi denotes an empty production�

The entities that can be communicated on channels are called values� They include variables� records of
values� package values� rectype values� and constants�

Val � Id Variable

 Label Val ��� Label Val � Record

 Type � Val Polymorphic package
� rec � T Val � Rectype value
String String constant
Char Character constant
Int Integer constant
Bool Boolean constant

Label � hemptyi Anonymous label
Id � Explicit label

There are no channel constants� only variables ranging over channels �note� however� that variables can range
over any kind of value� not just channels�� Record values generalise tuple values �since the labels in a record
are optional��

�



www.manaraa.com

Rectype values help the typechecker determine the types of recursive data structures� package values
are part of the mechanism used to implement polymorphism in Pict� We defer the description of these to
Sections ��� and ����

Values can be decomposed by means of patterns� A variable pattern x�T binds the variable x� A package
pattern 
X�T�p binds the type variable X plus whatever variables are bound in p� A layered pattern x�T�p

binds the variable x plus whatever variables are bound in p� All the variables bound by a pattern must be
pairwise distinct�

Pat � Id � Type Variable pattern
� � Type Wildcard pattern
Id � Type � Pat Layered pattern

 Label Pat ��� Label Pat � Record pattern

 Id � Type � Pat Package pattern
� rec � T Pat � Rectype pattern

Note that all bound variables �and wildcards� are explicitly typed� In practice� many of these type annota�
tions can be inferred automatically by the Pict compiler� A layered pattern can be used to bind a variable
to a value at the same time as decomposing the value� For example� matching the pattern x�
y z� against
the value 
�� true� binds x to 
�� true�� y to ��� and z to true� We defer the description of rectype and
package patterns to Sections ��� and ����

A process pre	xed by a pattern is called an abstraction� Introducing a separate syntactic class of ab�
stractions leaves room for later expansion� We make use of this in the full language to allow higher�order
functions to appear wherever process abstractions are allowed �cf� Section �����

Abs � Pat � Proc Process abstraction

In an abstraction p � e� variable occurrences in p are binders with scope e�
The basic forms of processes are output atoms� input pre	xes� parallel compositions� processes pre	xed

by declarations� and conditional processes�

Proc � Val � Val Output atom
Val � Abs Input pre	x
Val �	 Abs Replicated input pre	x
� Proc � Proc � Parallel composition
� Dec Proc � Local declaration
if Val then Proc else Proc Conditional

Arbitrary values must be allowed to the left of � and � so that substitution is a total operation �cf� Section �����
Our type system guarantees that these values can only evaluate to channel names�

Finally� a new declaration introduces a new channel� Again� we make declarations a separate syntactic
category to leave room for growth�

Dec � new Id � Type Channel creation

The expression �new x�T e� binds x with scope e� Note that new channels are always annotated with
explicit types�

��� Example

We now present some simple examples of Pict core language programs� In Section ��� we show how to
annotate the examples with appropriate explicit type information� �Section ��� uses the additional features
of the full language to express these examples much more concisely��

The following process implements a �cons�cell server� which� when sent a triple 
hd tl r�� constructs
a process encoding a cons cell �with head hd and tail tl�� and returns the address of the cons cell along the
result channel r�

cons���hd tl r� � �new l �r�l � l���n c� � c��hd tl���
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Upon receiving a triple 
hd tl r�� we 	rst create a new channel l �l can be thought of as the loca�
tion of the cons cell�� Then� in parallel� we return l along the result channel r and run the process
l�	
n c� � c�
hd tl�� This process responds to messages sent along l by sending hd and tl along c�

The following process behaves similarly� except that it constructs a nil� or empty� list� Upon receiving a
tuple 
r� containing just a result channel r� we create a new channel l� Then� in parallel� we return l along
the result channel r and run the process l�	
n c� � n�
�� This process responds to messages sent along l

by sending the trivial value 
� back along n�

nil���r� � �new l �r�l � l���n c� � n�����

The following program fragment illustrates how we can interact with nil and cons to build a list contain�
ing the number ��� We 	rst create a fresh result channel r� and send it along the nil channel� In parallel�
we wait for nil�s reply to be sent along r�� binding the resulting value to e� We then create a second result
channel r� and send the tuple 
�� e r�� to cons� This has the e�ect of building a cons cell whose head is
�� and tail is e� The location of the new cell is returned along r��

�new r	 �nil��r	� �

r	�e � �new r
 �cons���� e r
� �

r
�l � �������

We can interrogate our list by sending a pair of channels 
n c� along the channel l� By convention� an
empty list will reply on n �by sending the trivial value 
��� while a cons cell will reply on c �by sending a
pair of the head and tail of the list�� The following process therefore executes the expression e if l is the
empty list� and f if l is a cons cell �in which case hd and tl will become bound to the head and tail of l��

�new n �new c �l��n c� � n��� � e � c��hd tl� � f���

��� Structural Congruence

In discussing these examples� we have appealed to an informal understanding of how Pict expressions behave�
It is now time to make this understanding precise� Following �Mil���� the operational semantics of Pict
programs is presented in two steps� First� we de	ne a structural congruence relation e� � e�� this relation
captures the fact that� for example� the order of the branches in a parallel composition has no e�ect on its
behavior� Next� we de	ne a reduction relation e� � e�� specifying how processes evolve by communication�

Structural congruence plays an important technical role as a device for simplifying the statement of the
reduction relation� For example� we intend that the processes �x�v � x�y � e� and �x�y � e � x�v� both
reduce to fy �� vge� Since these two are structurally congruent� it su
ces to write the reduction rule only
for the 	rst case and to stipulate� in general� that if e contains some possibility of communication then any
expression structurally congruent to e has the same possible behavior�

The 	rst two structural congruence rules state that parallel composition is commutative and associative�

�e� � e�� � �e� � e�� �Str�Comm�

��e� � e�� � e�� � �e� � �e� � e��� �Str�Assoc�

The third rule� called scope extrusion in the ��calculus literature� plays a crucial role in communication�

x �� FV�e��

��new x�T e�� � e�� � �new x�T �e� � e���
�Str�Extrude�

Informally� it says that the scope of the channel x� which starts out private to the process e�� can be extended
to include e�� The side�condition x �� FV�e�� ensures that e� does not already have a free channel named x�
�This condition can always be satisifed by ��converting the bound name x in the expression �new x�T e��

before applying the scope extrusion rule�� For example� the process expression ��new x�T c�x� � e� may
be transformed to �new x�T �c�x � e��� if e does not have x as a free variable� It is this rule that allows
the new channel x to be communicated outside of its original scope to a process in e�
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��� Substitution and Matching

To de	ne reduction� we need some notation for matching values against patterns�
A substitution is a 	nite map associating variables with values and type variables with types� If �� and

�� are substitutions with disjoint domains� then �� � �� is a substitution that combines the e�ects of �� and
��� A substitution is extended to a function from values to values by applying it to variables that fall in its
domain and leaving the rest unchanged� For example� applying the substitution � 
 fx �� ag � fy �� 
�g
to the value 
z 
x� x y�� written ��
z 
x� x y��� yields 
z 
a� a 
��� Substitution is extended in the
usual way to an operation on processes� renaming bound variables as necessary to avoid capture�

When a value v is successfully matched by a pattern p� the result is a substitution fp �� vg� de	ned as
below� �If v and p do not have the same structure� then fp �� vg is unde	ned� The typing rules ensure that
this cannot happen in well�typed programs��

fx�T �� vg 
 fx �� vg
f��T �� vg 
 f g

f�x�T�p� �� vg 
 fx �� vg � fp �� vg
f�rec�T p� �� �rec�S v�g 
 fp �� vg

f
X�S�p �� 
T�vg 
 fX �� Tg � fp �� vg
f
l�p����lnpn� �� 
l�v����lnvn����g 
 fp� �� v�g � � � � � fpn �� vng

The match function traverses the structure of the pattern and the value in parallel� yielding bindings
when variables are encountered in the pattern� �Note that the variables bound in a pattern are always
distinct� so the � operations in the de	nition of match are always well de	ned��

The match rule for records allows a record pattern to be matched by a record value with extra 	elds �at
the end of the record�� For example� the record pattern 
l�y� matches the record value 
l��� m�true��
This gives rise to simple form of record subtyping which is particularly easy to implement �it is common to
allow extra 	elds to be added anywhere in a record� but this signi	cantly complicates the implementation of
records� especially in the presence of separate compilation��

��� Reduction

The reduction relation e� � e� may be read as �The process e� can evolve to the process e��� That is� the
semantics is nondeterministic� specifying only what can happen as the evaluation of a program proceeds� not
what must happen� Any particular execution of a Pict program will follow just one of the possible paths�

The most basic rule of reduction is the one specifying what happens when an input pre	x meets an
output atom�

fp �� vg de	ned

�x�v � x�p � e� � fp �� vg�e�
�Red�Comm�

In the case when the input expression is replicated� the communication rule is similar� except that the input
expression is not consumed by the act of communication�

fp �� vg de	ned

�x�v � x�	p � e� � �fp �� vg�e� � x�	p � e�
�Red�RComm�

The next two rules allow reduction to proceed under declarations and parallel composition�

e� � e�

�d e�� � �d e��
�Red�Dec�

e� � e�

�e� � e�� � �e� � e��
�Red�Prl�

The body of an input expression� on the other hand� cannot participate in reductions until after the input
has been discharged� Reduction of conditional processes is straightforward� The typing rules ensure that
the guard in a closed� well�typed conditional is either true or false�

if true then e� else e� � e� �Red�If�T�

if false then e� else e� � e� �Red�If�F�

�



www.manaraa.com

The structural congruence relation captures the distributed nature of reduction� Any two subprocesses at
the �top level� of a process expression �i�e� not guarded by any input pre	xes� may be brought into proximity
by structural manipulations and allowed to interact�

e� � e� � e� � e�

e� � e�
�Red�Str�

Note that the reduction rules do not maintain any particular ordering among messages sent along the same
channel� For example� in the process �x�y � x�z � x�w � e� either the value y or the value z may be
communicated to the process x�w � e�

Strictly speaking� the semantics we have given is de	ned only for closed programs � we have been
intentionally informal about the built in channels �such as print� which connect a Pict program to its
environment� Work is underway on a more re	ned semantic framework explicitly incorporating interactions
with the environment �Sew����

��� Fairness

Even on closed programs� the reduction semantics of the previous section leaves one important issue unad�
dressed� it characterizes the set of possible behaviors of a process expression� but makes no commitment as
to which of these behaviors will actually be observed when the expression is compiled and executed� For ex�
ample� there is a valid execution of the process �new x �x�
� � x�	
� � x�
� � x�
� � a�
��� in which
the output a�
� is never executed� But a compiler that produced this behavior would be unsatisfactory�
since it would fail to capture the programmer�s intuitive expectation that the actions of subprocesses running
in parallel will be interleaved fairly� so that the second input on x will eventually succeed�

We are unaware of any work formalising fairness for ��calculus� but Costa and Stirling�s work on fairness
for CCS �CS��� seems likely to be generalisable to the case of ��calculus� Costa and Stirling consider
two kinds of fairness� weak fairness stipulates that if a process is continuously able to communicate on a
channel then it must eventually be allowed to proceed� strong fairness insists that any process which is
able to communicate on a channel in	nitely often� even if not continuously� must eventually proceed� A
weak fairness guarantee is su
cient to ensure that the output a�
� in the above example will eventually
be executed� since the input x�
� � a�
� is continuously enabled� If� however� the process x�	
� � x�
�

is replaced by a process which does some other communication before sending 
� along x� then a strong
fairness guarantee would be required to ensure that the output a�
� is eventually executed� since the input
x�
� � a�
� is not continuously able to communicate�

In practice� it is relatively easy to achieve a fair execution strategy by using FIFO channel queues and
a round�robin policy for process scheduling� This guarantees that a process waiting to communicate on a
channel will eventually succeed� assuming that enough partners become available� Our experience of writing
applications in Pict has been that this execution strategy works well� For example� the FIFO queueing of the
lock channel l in the reference cell of Section ��� ensures that competing set and get requests are handled
fairly� the replicated choice construct of �PT��� exhibits similar good behavior�

� Type System

The Pict type system has its roots in the theoretical literature on type systems for the ��calculus �Mil���
Gay��� VH��� PS��� Tur��� and for functional languages� among which its most immediate predecessors are
Quest �Car��� and Amber �Car���� The treatment of subtyping and higher�order polymorphism is based
on recent work on static type systems for object�oriented languages �Car��� Bru��� CHC��� PT��� HP���
FM��� AC��� etc�� and the ��calculus F�

� �Car��� Mit��� PS���� The rules for channel types are taken from
Pierce and Sangiorgi�s type system for the pure ��calculus �PS���� An early version of the Pict type system
was presented in �PRT����

Typed process calculi with related goals have been proposed by Nierstrasz �Nie��� and Vasconce�
los �Vas���� Further re	nements to the channel typing discipline incorporating notions of linear channel usage
have been studied by Honda �Hon��� HY��� Hon���� and more recently by Kobayashi and Yonezawa �KY���
and the present authors in collaboration with Kobayashi �KPT����
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�� Channel Types

Most type systems for process calculi and concurrent languages impose the constraint that each channel
must be used throughout its lifetime to carry values of a single type� This restriction greatly simpli	es the
task of type analysis� since the well�typedness of a parallel composition �e� � e�� is independent of the
ordering of interactions between e� and e��

Since computation in Pict is based purely on communication over channels� the basic elements of its type
system are the types of channels and of the values that they carry� For example� a process that outputs a
value v along a channel c is well typed if c has type �T �read �channel carrying T�� and v has type T�


�� Recursive Types

Like most programming languages� Pict o�ers the capability to build and manipulate recursive data structures
like lists and trees� Such recursive types have received considerable attention in the literature �MPS��� CC���
AC��� etc��� and many di�erent technical treatments have been proposed� Because the rest of the Pict type
system is already somewhat complex and recursive types tend to be used only in small sections of code� we
have chosen one of the simplest alternatives� where the �folding� and �unfolding� of the recursion must be
managed explicitly by the programmer�

For example� suppose R is the recursive type �rec X � �X�� A value of type R can be coerced �by means
of a rec pattern� to a value of type �R �where the recursion in the type R has been unfolded once�� Dually�
a rec value construct can be used to coerce a value of type �R into a value of R�

We can use the recursive type �rec L � �
�
� �
Int L��� to represent the type of integer lists in our
�cons cell server� from Section ����

type IntList � �rec L � 
�
�� 
�Int L���

cons���hd�Int tl�IntList r�
IntList� �

�new l�
�
�� 
�Int IntList��

�r��rec�IntList l� � l���n�
�� c�
�Int IntList�� � c��hd tl���

The type annotations on hd� tl and r indicate that cons takes as arguments an integer and an integer list�
and returns an integer list along the channel r� The type of the new channel l is an unfolding of the type
IntList� The unfolded IntList type exposes the fact that a list is represented as a channel� and enables us
to use l in a replicated input operation� However� when we return l along the result channel r� we coerce
the type of l to IntList �using a rec value construct��

Values of recursive type are �unfolded� during communication by patterns of the form �rec�T p��
For example� if c is a channel of type �IntList� then the bound variable l in the body of the process
c��rec�IntList l� � ��� has type �
�
� �
Int IntList��� the unfolding of IntList�


�
 Subtyping

Channel types serve a useful role in ensuring that all parts of a program use a given channel in a consistent
way� eliminating the possibility of pattern matching failure �cf� Section ���� at run time� Of course� pat�
tern matching failure is just one kind of bad behavior that programs may exhibit� especially in concurrent
programs� the range of possible programming mistakes is vast� there may be unintended deadlocks� race con�
ditions� and protocol violations of all kinds� Ultimately� one might hope to see static analysis tools capable
of detecting many of these errors� but the technology required to do this is still far o�� Fortunately� there
are some simple ways in which channel types can be enriched so as to capture useful properties of programs
while remaining within the bounds of current typechecking technology�

In Pict� it is relatively rare for a channel to be used for both input and output in the same region of the
program� typically� some parts of a program use a given channel only for reading while in others it is used
only for writing� For example� the �cons cell server� in the example above only reads from the channel cons�
while clients only write to cons� Similarly� given a request 
hd tl r�� the server only writes to the result
channel r� while the client only reads from it�

�
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Pict exploits this observation by providing two re	nements of the channel type �T� a type �T giving only
the capability to write values of type T and� symmetrically� a type �T giving only the capability to read
values of type T� For example� we can re	ne our type annotations for cons as follows�

type IntList � �rec L � ����� ��Int L���

cons���hd�Int tl�IntList r��IntList� �

�new l�
���� ��Int IntList��

�r��rec�IntList l� � l���n���� c���Int IntList�� � c��hd tl���

The re	ned type annotations make it clear that cons only requires write capability on the channels r� n�
and c� Note that the channel l is created with both read and write capabilities� The cons cell server uses
l�s read capability locally and gives the client the write capability�

The types �T� �T� and �T fall naturally into a subtype relation �PS���� since a channel of type �T may
always be used in a context where one of type �T or �T is expected �for example� in an input or output
expression��


�� Record Subtyping

One objective of the Pict project was to explore the applicability of our earlier theoretical work on type
systems for object�oriented programming� In �PT���� we proposed a powerful combination of subtyping and
polymorphism as a basis for statically�typed object�oriented programming in functional languages� equipping
Pict with a similar type system makes it a useful testbed for experiments with statically typed concurrent
objects�

We implement a simple form of record subtyping which allows record 	elds to be added to the end of a
record� For example� the record type 
l�Int m�Bool� is a subtype of 
l�Int�� Unlike some record type
systems� the order of the 	elds in a Pict record is signi	cant� For example� 
m�Bool l�Int� is not a subtype
of 
l�Int m�Bool�� Pict�s simple record subtyping� in combination with the fact that the order of record
	elds is signi	cant� simpli	es the compilation of record values� since the position of a 	eld in a record can be
determined from its type at compile time �this is especially useful when separately compiling Pict programs��


�� Polymorphism

Our type system may readily be extended to include polymorphism� just as simply typed ��calculus can be
extended with polymorphism �Gir��� Rey���� We support polymorphic communications by adding two new
syntactic forms� package values 
T�v and package patterns 
X�p� For example� if c is a channel of type �Int�
the output expression z�
Int�
� c� sends along the channel z the type Int and the pair of values � and
c� The type of z itself is �
X�
X �X�� pronounced �channel carrying a type X� a value belonging to type X�
and a channel carrying elements of X�� In more familiar notation� this type might be written ���X�
X �X���
A process receiving from z has the form z�
X�
v�X x��X� � ���� which binds the type variable X to the
received type� The bound variables v and x have types X and �X� This e�ectively means that the only legal
operation on v is to send it along x�

We can now generalise our cons cell server so that it is polymorphic in the list element type�

cons �� �X��hd�X tl��List X� r���List X�� �

�new l�
���� ��X �List X���

�r��rec��List X� l� � l���n���� c���X �List X��� � c��hd tl���

Clients of the polymorphic cons must now send an additional type argument along the cons channel� For
example� the following process uses the polymorphic cons to build an integer cons cell �we assume the tail
of the list� tl� has already been built and has type �List Int���

�new r�
�List Int� �cons��Int���� tl r� � r�l��List Int� � �����

Polymorphism and subtyping are combined by giving each bound type variable in a package value an
upper bound� as in the polymorphic ��calculus with bounded quanti	cation� System F� �CW��� CMMS����

��
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For example� the type �
X�T�
X �X� describes a channel that can be used to transmit a type X and two
values of types X and �X� but also stipulates that the only legal values of X are subtypes of T�

Just as functions in Pict have no special status � being regarded as output channels on which clients can
send tuples of arguments and a continuation channel where the function is to send the result � polymorphic
functions are represented as output channels carrying package values� This �pun� entails that the primitive
form of polymorphism in Pict is existential types� not universal types as in most typed ��calculi�


�� Type Operators

Strictly speaking� the type �List Int� is formed by applying the type constructor List to the type Int�
That is� List is a function from types to types� To avoid nonsensical applications like �List List� or
�Int Int�� we classify types and type operators according to their kinds� as in typed ��calculi such as
System F� �Gir��� Bar��� and F�

� �Car��� Mit��� HP��� PS���� Thus� the type system recognizes three
distinct levels of expressions� values� types� and kinds� The level of values contains familiar entities like ��
true� the tuple 
� true�� and channels� The level of types contains proper types like Int� Bool� �List Int��

Int Bool�� and �Int� as well as type operators like List� The proper types classify values� in the sense that
entities at the level of values may inhabit proper types� � inhabits Int� etc� In the same sense� kinds classify
types� all the proper types inhabit the kind Type� type operators accepting one proper type parameter and
yielding a proper type �like List� inhabit the kind �Type��Type�� type operators taking two proper type
arguments and yielding a proper type inhabit the kind �Type���Type��Type��� and so on�


�� Type Inference

Although Pict�s core language is explicitly typed� it is very convenient to allow some type annotations to
be omitted from user programs� Some languages� such a ML and Haskell� which are based on the Hindley�
Milner type system� can automatically infer all necessary type annotations� Pict�s type system� however� is
signi	cantly more powerful than the Hindley�Milner type system �since� in particular� it allows higher�order
polymorphism and subtyping�� This unfortunately means that we don�t have an algorithm which can infer all
the necessary type annotations in a Pict program� Instead� we use a simple partial type inference algorithm
�the algorithm is partial� in the sense that it may sometimes have to ask the user to add more explicit type
information rather than determine the types itself��

Pict�s partial type inference algorithm exploits the fact that there are a number of common cases where
the type assigned to a bound variable is completely determined by the surrounding program context� For
example� the variable x in the input expression c�x�e has type Int if the channel c is known to have type
�Int� Pict�s type inference algorithm is local� in the sense that it only uses the immediately surrounding
program context to try and 	ll in a missing type annotation� This might at 	rst seem rather restrictive�
but our experience so far has been very favorable� �Our largest Pict program is approximately ���� lines
long� and there are very few cases where one feels that the type inference algorithm isn�t inferring enough
type annotations automatically�� One of the reasons partial type inference works well in Pict is that many
programs already contain explicit type annotations �for the purposes of documentation�� It turns out that
in many cases these explicit type annotations are su
cient to uniquely determine the types which should be
assigned to all other bound variables�

A simple type inference algorithm has two important bene	ts� Firstly� it makes it easy for Pict pro�
grammers to understand the process of type inference �and thereby understand where type annotations are
required and what type errors mean�� Secondly� a simple type inference algorithm is easier to formalise�
Pict�s type inference algorithm forms part of the speci�cation of the Pict language� Type systems for lan�
guages such as ML and Haskell can be speci	ed by means of a set of typing rules which non�deterministically
pick the  correct� types for all bound variables� No details of the actual process of type inference are required
�though it is necessary to prove that a sound and complete type inference algorithm does exist�� Since we
cannot infer all missing type annotations in Pict programs� it is necessary to specify exactly which type
annotations can be inferred automatically� Because of the local nature of partial type inference in Pict� it is
possible to describe the algorithm using rules which look much like Pict�s typing rules� but which formalise
how type information propagates into and out of an expression�
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In this paper� we concentrate on the explicitly typed language� and omit details about type inference�
See the Pict de	nition �PT��� for a formal description of type inference�


�� Notation

The syntax of type expressions is as follows�

Type � � Type Input!output channel
� Type Output�only channel
� Type Input�only channel

 Id � Type � Type Package type

 Label Type ��� Label Type � Record type
Id Type identi	er
� Id � Kind � Type Type operator
� Type Type � Type application
�rec Id � Kind � Type � Recursive type
Top � Kind Maximal type
Int Integer type
Char Character type
Bool Boolean type
String String type

Kind � � Kind �� Kind � Kind of type operators
Type Kind of types

A typing context " is a list of bindings associating variables with their types and type variables with their
upper bounds� The metavariables " and # range over contexts� The concatenation of " and # is written
"�#�

The type system of Pict comprises axioms and inferences rules de	ning sets of derivable statements of
the following forms�

" � S � T S is a subtype of T
" � v � T value v has type T under assumptions "
" � d 	 # declaration d is well formed and yields bindings #
" � p � T 	 # pattern p requires type T and yields bindings #
" � a � T abstraction a is well formed and accepts type T

" � e ok process expression e is well formed
" � T � K type T has kind K

� " ok context " is well formed

The 	rst two kinds of statement are familiar from type systems for functional languages� The third is used
for checking Pict declarations� Since a declaration cannot be sent over a channel� it does not itself have a
type� however� it may give rise to a collection of variable bindings for some following scope� and we need
to keep track of the types of these variables� The �type� of a declaration is therefore a typing context�
Similarly� a pattern binds some variables and thus gives rise to a context� however� a pattern also has a type�
since it can only match values of a certain form� An abstraction requires an argument of a certain form� A
process expression yields neither bindings nor a value� it is simply either well formed or not� �A process is
well formed in a given context if all its input� and output�subexpressions respect the typings of the channels
over which communication occurs�� The last two forms of statements give standard rules for well�formedness
of types and typing contexts�

The rules for well�kinded types and well�formed contexts are familiar from the literature on higher�order
typed ��calculi �e�g� �HP��� PS����� and we do not discuss them here� The rest of this section presents a
selection of the rules which de	ne the remaining forms of typing statements� �A full description of the typing
and kinding rules can be found in the Pict language de	nition �PT�����
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�� Subtyping

The subtype relation consists of two structural rules plus one or more rules for each type constructor or
constant� The structural rules state that subtyping is re�exive and transitive and includes 
�conversion on
types so that� if F is the type operator �X�Type � 
X X�� then �F Int� is equivalent to 
Int Int��

S 
�T T

" � S � T
�S�Conv�

" � S � K " � U � K " � T � K " � S � U " � U � T

" � S � T
�S�Trans�

Formally� the conversion relation 
�T contains both ordinary 
�conversion ���X�K�T� S 
�T fX �� SgT�
and a rule of �top�conversion� �cf� �PS���� that makes Top at operator kinds behave like a type operator
�Top��K���K�� S 
�T Top�K���

Each type variable is a subtype of the upper bound declared for it in the context�

"�� X�T�"� � X � T �S�TVar�

Top�K is a maximal type for each kind K� In particular� Top�Type� which may be written just Top� is the
largest type�

" � S � Top�K �S�Top�

A record type S is a subtype of another record type T whenever S contains more 	elds than T �and
where the types of the corresponding 	eld values are also subtypes�� For example� if Char � Int then

l�Char m�Bool� � 
l�Int��

" � T� � T�� ��� " � Tn � T�n

" � 
l�T����lnTn���� � 
l�T
�
����lnT

�
n�

�S�Record�

The package type 
X�S��S� is a subtype of 
X�T��T� if the bounds S� and T� have the same kind� S� is
a subtype of T�� and S� is a subtype of T� under the assumption that X is a subtype of S��

" � S� � K " � T� � K " � S� � T� "� X�S� � S� � T�

" � 
X�S��S� � 
X�T��T�
�S�Package�

The channel constructor � is covariant in its argument and � is contravariant� Operationally� this captures
the observation that� for example� if a given channel x is being used in a given context only to read elements
of type T� then it is safe to replace x by another channel y carrying elements of type S� as long as any element
that is read from y may safely be regarded as an element of T � that is� as long as S is a subtype of T�

" � S � T

" � �S � �T
�S�IChan�

" � T � S

" � �S � �T
�S�OChan�

Notice that the contravariance of � gives rise to the usual rule of subtyping between types of functions� A
function f � S� � S� is implemented in Pict as a server process reading requests of type 
S� �S�� from a
channel f� performing the appropriate calculation� and returning its result on the channel provided as its
second argument� From the point of view of a caller� the request channel f has type �
S� �S��� this type is
contravariant in S� and covariant in S�� as expected�

" � T� � S� " � S� � T�

" � �
S� �S�� � �
T� �T��

The constructor � is invariant in the subtype relation �i�e� �S is a subtype of �T only when S and T

are equivalent�� The type �T is a subtype of both �T and �T� That is� we are allowed to forget either the
capability to write or the capability to read on a channel� a channel that can be used for both input and
output may be used in a context where just one capability is needed�

" � �T � �T �S�ChanIChan�

" � �T � �T �S�ChanOChan�

��
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The subtype relation is extended pointwise from proper types to other kinds� if F and G are type operators�
then we say F � G if �F T� � �G T� for all appropriately kinded argument types T�

"� X�Top�K � S � T

" � �X�K�S � �X�K�T
�S�Abs�

" � S � T

" � �S U� � �T U�
�S�App�

For subtyping of recursive types� we use the familiar �Amber rule� �Car��� AC���� which states that
�rec X�S� is a subtype of �rec Y�T� if we can show S � T under the assumption X � Y�

"� Y�Top�K� X�Y � S � T

" � �rec X�K�S� � �rec Y�K�T�
�S�Rec�


��
 Values

If the current context contains the binding x�T for the variable x� then the type of x is T in this context �all
bound variables are assumed to be unique� so there is no ambiguity in this rule��

"�� x�T�"� � x � T �V�Var�

If the values v� through vn have the types T� through Tn� then the record value 
l�v����lnvn� has the
record type 
l�T����lnTn��

" � v� � T� ��� " � vn � Tn

" � 
l�v����lnvn� � 
l�T����lnTn�
�V�Record�

A value v can be incorporated into an existential package of type 
X�U�T if the �witness type� S is a
subtype of U� The actual type of the value v must match the type T after the substitution of S for X�

" � S � K " � U � K " � S � U " � v � fX �� SgT

" � 
S�v � 
X�U�T
�V�Package�

For example� if res has type �Bool� then the value 
Bool�
false res� has type 
X�
X �X�� since false

has type fX �� BoolgX 
 Bool and res has type fX �� Boolg�X 
 �Bool� Readers familiar with typed
��calculi will recognize the similarity of this rule to the standard introduction rule for existential types
�e�g� �CW��� MP����� The pattern typing rule P�Package in Section ���� plays the role of the standard
elimination rule for existentials�

A value of a recursive type T can be formed from a value of whose type matches the �unrolling� of T�

" � T � Type T� U " � v � U

" � �rec�T v� � T
�V�Rec�

where T� U means that T is a recursive type and U is obtained from T by unrolling the recursion one step�
For example� if R is the type �rec X�Type � �X� and c is a channel of type �R� then �rec�R c� has type R�
since R� �R�

S 
�T �rec X�K � T�

S� fX �� �rec X�K � T�gT
�Unroll�Rec�

In general� the unrolling operator � must take into account the fact that the unrolling operation may
be applied to a type expression formed by applying a recursively de	ned type operator to some arguments�
in this case� the arguments are carried along unchanged to the result and the recursive type is unrolled
�in�place��

S 
�T �T� T�� T� � U

S� �U T��
�Unroll�App�

Finally� we allow types of values to be promoted in the subtype relation� if v is a value of type S and S

is a subtype of T� then v also has type T�

" � v � S " � S � T

" � v � T
�V�Sub�

This rule embodies the principle of �safe substitutability� that underlies the subtype relation� the statement
S � T means that an element of S can always be used in a context where an element of T is required�

��



www.manaraa.com


��� Declarations

A new declaration returns a binding for the new channel using the declared type �we check that the declared
type is well�kinded and equivalent to a channel type��

" � T � Type " � T 
�T �U

" � new x�T 	 x�T
�D�New�


��� Patterns

Pattern typing statements have the form " � p � T 	 #� That is� each pattern has a type� describing the
shape of the values that it can match� and moreover gives rise to a set of type� and term�variable bindings�

A variable pattern x�T matches any value of type T and gives rise to a binding for the variable x�

" � T � Type

" � x�T � T 	 x�T
�P�Var�

A wildcard pattern ��T matches any value of type T but does not give rise to any variable bindings�

" � T � Type

" � ��T � T 	 �
�P�Wild�

A layered pattern x�T�p matches a value of type T� We return whatever variables are bound in p� plus a
binding for x�

" � T � Type " � p � T 	 #

" � x�T�p � T 	 x�T�#
�P�Layered�

A rec pattern accepts a value of type T� but the subpattern p is matched against a value with the unfolded
recursive type U�

" � T � Type T� U " � p � U 	 #

" � �rec�T p� � T 	 #
�P�Rec�

A record pattern 
l�p����lnpn� has the type 
l�T����lnTn�� where the Ti�s are the types of its elements�
and gives rise to a set of bindings including all the bindings from its subpatterns�

" � p� � T� 	 #� ��� " � pn � Tn 	 #n

" � 
l�p����lnpn� � 
l�T����lnTn� 	 #�� � � � �#n

�P�Record�

A package pattern 
X�U�p matches any value of type 
X�U�T� where T is the type of the pattern p �under
the assumption that X is a subtype of U�� The pattern 
X�U�p yields not only the bindings produced by p�
but also the type binding X�U�

" � U � K "� X�U � p � T 	 #

" � 
X�U�p � 
X�U�T 	 X�U�#
�P�Package�


��
 Process Abstractions

A process abstraction p�e requires an argument of type T� where T is the type of the pattern p� The process
e is typechecked in a context extended with the bindings # introduced by p�

" � p � T 	 # "�# � e ok

" � p�e � T
�A�Abs�


��� Processes

The typing rules for processes are the simplest of all� The parallel composition of two processes is well formed
in a given context if both parts are�

" � e� ok " � e� ok

" � �e� � e�� ok
�E�Prl�

An input expression v�a is well formed if v is a channel for which we have input permission� i�e�� it has type
�T for some T� and a is a well formed abstraction which accepts a value of type T�
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" � v � �T " � a � T

" � v�a ok
�E�In�

Symmetrically� an output expression v��v� is well formed if v� has an output channel type �T� for some T�
and v� has type T�

" � v� � �T " � v� � T

" � v��v� ok
�E�Out�

Finally� a local declaration provides a set of bindings # in which the process body is checked�

" � d 	 # "�# � e ok

" � �d e� ok
�E�Dec�

A conditional expression is well formed if the guard expression has boolean type� and the two branches of
the conditional are well formed�

" � b � Bool " � e� ok " � e� ok

" � if b then e� else e� ok
�E�If�


��� Type Safety

The relation between the type system and the operational semantics can be expressed in the form of two
slogans� evaluation cannot fail in well�typed processes� and reduction preserves typing� We de	ne runtime
failure by means of a set of inference rule similar in form to Pict�s reduction rules �for the sake of brevity�
we only present the most important rules��

The most important type of failure we hope to prevent is pattern�matching failure during communication
�this type of failure can also occur in a communication with a replicated input� but we omit that rule here��

fp �� vg unde	ned

�x�v � x�p � e� fails
�Fail�Comm�

In addition� a process fails if it attempts to use any value other than a channel as the subject of a com�
munication �recall that we do not have any syntax for channel constants� only variables which range over
channels�� For example� 
���� fails� since it attempts to use the record value 
� as a channel� �We omit the
rules for similar failures in input and replicated input pre	xes��

v� is not a variable

v��v� fails
�Fail�Out�

Failures may also occur inside local declarations and parallel compositions of processes �the Fail�Str rule� in
combination with Fail�Prl� captures the case when a failure occurs in the right�hand subterm of a parallel
composition��

e fails

�d e� fails
�Fail�Dec�

e� fails

�e� � e�� fails
�Fail�Prl�

We reuse the structural congruence relation �from Section ���� to capture the distributed nature of failures�
A process is considered to have failed if any two subprocesses at the �top level� �i�e� not guarded by any
input pre	xes� may be brought into proximity by structural manipulations so that they fail�

e� � e� e� fails

e� fails
�Fail�Str�

������ Conjecture �Type safety	
 If " � e then e does not fail�

������ Conjecture �Subject reduction	
 If " � e� and e� � e� then " � e��

The metatheoretic foundations needed to prove these two properties have already been established for the
major components of the Pict type system � for channel types and subtyping by Pierce and Sangiorgi �PS����
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for polymorphic channels by Turner �Tur���� for higher�order polymorphism with subtyping by Pierce and
Ste�en �PS��� and Compagnoni �Com���� However� the above properties remain conjectures� since we have
not checked the type system as a whole�

� Derived Forms

The statically�typed core language of Pict is a powerful� safe� and unacceptably verbose programming nota�
tion� In this section� we show how more convenient high�level constructs are built up from the core by means
of source�to�source translations � following in the tradition of numerous papers showing how various high�
level features can be encoded in the ��calculus �San��� San��� San��� Mil��� Jon��� Wal��� Ama��� AP���
etc��� We discuss only the more interesting translation rules� the complete list can be found in the Pict
language de	nition �PT����

��� Simple Translations

Large programs often contain long sequences of declarations like �new x� ��� �new xn e��� To avoid
proliferation of parentheses� we introduce the more compact syntactic form �new x� ��� new xn e� in the
high�level language� Formally� we extend the syntactic category of processes with n�ary declarations of the
form �d� ��� dn e� and introduce a translation rule

�d����dn e� 	 �d� ��� �dn e�� �Tr�DecSeq�

that shows how n�ary declarations may be interpreted as expressions in the core language�
In sequences of declarations� it is often convenient to start some process running in parallel with the

evaluation of the remainder of the declaration� We introduce the declaration keyword run for this purpose�
After a declaration sequence has been translated into a nested collection of individual declarations� run

declarations may be translated into simple parallel compositions�

�run e� e�� 	 �e� � e�� �Tr�Run�

For example� the process

�run print��twittering�

run print��rising�

print��overhead passing��

is transformed by Tr�DecSeq followed by two applications of Tr�Run into�

�print��twittering� � �print��rising� � print��overhead passing���

Many variants of the ��calculus allow process abstractions like F �x� y� 
 �xy j �xy� In Pict� such abstractions
are introduced via the declaration keyword def� as in def f 
x y� � �x�y � x�y�� and instances are cre�
ated using the same syntax as output expressions� as in f�
a b�� The coincidence between the notations for
sending on a channel and instantiating a process abstraction is not accidental� we translate a process abstrac�
tion like the one above into a channel declaration new f and a replicated receiver f�	
x y� � �x�y � x�y��
so that instantiating an abstraction actually is just an output� Formally� this translation is captured by the
following rule�

�def x p � e� e�� 	 �new x �x�	p � e� � e���

Recursive and mutually recursive de	nitions are also allowed� The 	rst de	nition in a recursive group is
introduced by def� the others with and�

def f �x y� � ��� g��a b� ���

and g �z w� � ��� f��a b� ���

The general translation rule� then� is�

�def x�a� ��� and xnan e� 	
�new x� ��� �new xn �x��	a� � ��� � xn�	an � e�� ��� �

�Tr�Def�

Note that Tr�Def is a transformation on typed expressions� However� since the actual type of the channel
xi is determined by the type of the pattern pi� we omit the type annotation�

��



www.manaraa.com

��� Complex Values

So far� all the value expressions we have encountered have been built up in an extremely simple way� using just
variables� channels� basic values� tuples of values� and records of values� These simple values are important
because they are exactly the entities that can be passed along channels and participate in pattern matching�

In real programs� it is very common to write an expression that computes a simple value and immediately
sends it along some channel� For example� the process �new n c�n� creates a fresh channel n and sends it o�
along c� An alternative syntax for such expressions� which can often make them easier to understand� puts
the whole value�expression inside the output� c��new n n�� In general� it is useful to allow such expressions
in any position where a simple value is expected� Formally� we extend the syntactic category of values with
declaration values of the form �d v�� We use the term complex value for an expression in the extended
syntax that does not fall within the core language�

When we write c��new n n�� we do not mean to send the expression �new n n� along c� A complex
value is always evaluated �strictly� to yield a simple value� which is substituted for the complex expression�

In introducing complex values� we have taken a fairly serious step� we must now de	ne the meaning of a
complex value occurring in any position where simple values were formerly allowed� For example� the nested
expression c�
�� �new x x� �new y y�� must be interpreted as a core language expression that creates
two new channels� packages them into a simple tuple along with the integer �� and sends the result along c�

We interpret arbitrary complex values using a general �continuation�passing� translation� Given a com�
plex value v and a continuation channel c� ��v � c�� will denote a process that evaluates v and sends the
resulting simple value along c� We then introduce translation rules for process expressions containing complex
values� For example� the rule

v��v� 	 �new c ���v� � c�� � c�x � ��v� � x���� �Tr�Out�

translates an output v��v� into a process expression that 	rst allocates a fresh continuation channel c�
evaluates v�� waits for its result to be sent along c� and then evaluates v�� sending the result directly
along the channel x that resulted from the evaluation of v�� Input processes containing complex values are
translated similarly�

v�a 	 �new c ���v� c�� � c�x � x�a�� �Tr�In�

v�	a 	 �new c ���v� c�� � c�x � x�	a�� �Tr�RIn�

The continuation�passing translation itself is de	ned by induction on the syntax of value expressions�

��x� c�� 
 c�x

��k� c�� 
 c�k

���d v�� c�� 
 �d ��v� c���
���rec�T v�� c�� 
 �new c� ���v� c��� � c��x � c��rec�T x���

��
T�v� c�� 
 �new c� ���v� c��� � c��x � c�
T�x��

Record values are evaluated left�to�right�

��
l�v����lnvn�� c�� 
 �new c� ���v� � c��� � c��x� � ���

�new cn ���vn � cn�� � cn�xn �

c�
l�x����lnxn��� ��� ��

��
 Value Declarations

Since complex value expressions may become long or involve expensive computations� it is convenient to
introduce a new declaration form that evaluates a complex value and names its result� For example�
�val x � v e� binds x to the result of evaluating v and then executes e� Formally� val declarations
are translated using the continuation�passing translation�

�val p�v e� 	 �new c ���v� c�� � c�p � e�� �Tr�Val�

Note that when a val declaration �val p�v e� is translated into the core language� the body e appears
inside an input pre	x� This fact implies that val declarations are strict or blocking� the body cannot proceed
until the bindings introduced by the val have actually been established�

��
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��� Application

Of course� allowing declarations inside values represents only a minor convenience� the usefulness of this
extension by itself would not justify all of the foregoing machinery� But having established the basic pattern
of simplifying complex value expressions by means of a continuation�passing transformation� we can apply
it to a much more useful extension� In value expressions� we allow the application syntax �v v� ��� vn��
For example� if we de	ne a double function by

def double �s�String r��String� � concat��s s r�

�where concat is string concatenation�� then� in the scope of the declaration� we can write �double s�

as a value� dropping the explicit result channel r� For example� print��double �soothe�� causes
�soothesoothe� to be sent along the built�in channel print�

In fact� we allow a slightly more general syntax for application which enables argument values to be
labelled and witness types to be provided �in case the operation is polymorphic�� We de	ne the meaning of
application by adding a clause to the de	nition of the continuation�passing translation�

���v �T����Tn� l�v����lnvn�� c�� 
 �new c� ���v� c��� � c��x � ���

�new c� ���v� � c��� � c��x� � ���

�new cn ���vn � cn�� � cn�xn �

x�
T�����
Tn�
l�x����lnxn c����������

The  function� value v is evaluated 	rst� followed by the argument values v� to vn� Finally� the function is
called and instructed to return its result along the application expression�s continuation channel c�

��� Abstractions

Although Pict�s core language and type system do not distinguish between �real functions� and processes
that act like functions� it is nevertheless often useful to write parts of programs in a functional style�
This is supported by a small extension to the syntactic class of abstractions� mirroring the ability to omit
the names of result parameters in applications� For example� we replace a process de	nition of the form
def f 
a� a� a� r� � r�v� where the whole body of the de	nition consists of just an output of some �com�
plex� value on the result channel r� by a �function de	nition� def f �a� a� a�� � v that avoids explicitly
giving a name to r� Formally� this is captured by the following translation rule for abstractions�

��X��T����Xn�Tn� l�p����lnpn��T � v 	

X��T�����
Xn�Tn�
l�p����lnpn r��T� � r�v

�Tr�VAbs�

The derived form also allows for type arguments in a function de	nition� which are translated to package
patterns� Note that the explicit result type annotation T becomes a type annotation �T on the result channel�

Since anonymous process declarations like �def x 
� � e x� or �def x �� � v x� are frequently
useful for higher�order programming� we provide anonymous abstractions as a special form of value� We do
not need an extra case in our continuation�passing translation to describe the meaning of this special form�
we just add a local transformation on values�

�a 	 �def x a x� �Tr�AnonAbs�

For example�

def applyTwice �f x� � �f �f x��

val y � �applyTwice ��x� � �� x 	� ��

de	nes a function applyTwice and passes it an anonymous function that adds one to its argument�

��� Examples

To illustrate some of the high�level forms we have introduced� here is the list example from Section ���
rewritten using the full syntax�

��
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type �List X� � �rec L � ����� ��X L���

def nil ��X�� � �List X� � �rec ��n c� � n����

def cons ��X� hd�X tl��List X�� � �List X� � �rec ��n c� � c��hd tl��

Uses of nil and cons can also be streamlined by using application syntax�

val l � �cons 

 �cons �� �cons �� �nil����

The next example illustrates how we can build a simple reference cell object in Pict�

def newRef ��X� init�X� �

�new l�
X

run l�init

�set � ��v�X c����� � l�x � �l�v � c����

get � ��r��X� � l�x � �l�x � r�x���

Each message sent along newRef consists of a pair of values� init� the initial value of the reference cell that is
to be created� and an implicit result channel that the server uses to return the newly created reference cell to
the requesting client� After reading a request� the server creates a new channel l which acts as a �container�
for the current value of the reference cell� Sending a value along l represents the action of placing a value in
the container� Receiving a value from l empties the container� it is then the receiver�s responsibility to re	ll
the container by transmitting a new value along l� The container is initialized by sending init along l�

In parallel with initializing the container l� newRef returns a record containing set and get methods
�process abstractions�� Each method waits for a request on its service port� having received one� it reads l to
obtain the current value of the cell� re	lls l as appropriate� and sends a result �or acknowledgement� to the
client� It is possible that multiple copies of each method may be running in parallel at any given moment�
But since there is never any more than one sender on l� all but one of them will be blocked waiting for an
input on l�

� Discussion

We now return to the motivating questions from the introduction and summarize what we have learned�

What is it like to program in the ��calculus� What kind of high�level language can be built on it�

The ��calculus is best thought of as a kind of concurrent machine code� it is simple� �exible� and e
ciently
implementable� and it o�ers a suitable target for compilation of higher�level language features� Indeed� the
variety of features whose semantics can be expressed in terms of message passing is so wide that many quite
di�erent language designs could have arisen from our experiment�

It is worth bearing in mind that choosing ��calculus as a semantic framework strongly discourages the use
of some potentially useful language features� such as process priorities and exceptions� which cannot be easily
formalized in this setting� A particularly important feature that is not addressed by ��calculus is physical
distribution� since the semantic framework of the ��calculus lacks necessary concepts such as process location
and failure� Work is currently underway on the design of a new language� tentatively named Distributed
Pict� based on a variant of the ��calculus �FG��� extended with distribution primitives �FGL����� Cardelli�s
Obliq �Car��� achieves related aims by building on a primitive notion of network objects�

Pict belongs to a sizeable family of concurrent programming language designs inspired by theoreti�
cal calculi� including Vasconcelos�s TyCo �Vas���� Kobayashi�s HACL �Kob���� and numerous actor lan�
guages �Hew��� Agh��� etc��� A particularly close relative is the language Oz �Smo���� which integrates
functional� object�oriented� and concurrent constraint programming by translation into a common core cal�
culus �Smo���� Although this calculus uses concurrent constraints as its basic communication mechanism�
the encoding of high�level features is strongly reminiscent of Pict�

Our choice of high�level language features leads to a programming style similar to that found in functional
languages with channel�based concurrency such as PFL �Hol���� Amber �Car���� CML �Rep��� BMT����
Facile �GMP���� Poly!ML �Mat���� and Concurrent Haskell �JGF���� The most signi	cant di�erence lies in
the type system� the impredicative polymorphism of Pict permits the encoding of polymorphic functions
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using polymorphic communication� This pun is not possible in languages whose type systems are based on
ML polymorphism� where channels cannot carry messages of varying types� Also� the re	ned channel types
provided by Pict �such as input�only and output�only channels� give the programmer useful extra control
over channel usage in programs� Languages such as CML� Poly!ML� or Concurrent Haskell do not distinguish
di�erent modes of channel usage �and therefore also miss the opportunity to optimise the implementation of
communication by exploiting explicit type information��

What kinds of concurrent objects arise in this setting�

We have found that a simple style of objects arises almost necessarily in message�based concurrent
programming� an object is just a group of agents that cooperate to provide some collection of services to
the �outside world�� jointly maintaining the consistency of some shared data� It is convenient to group these
services together as a record of named channels� allowing access to the whole collection of services to be
passed around between clients as a single unit�

Unfortunately� the more subtle mechanisms found in many concurrent object�oriented languages� such as
dynamic method lookup and inheritance of synchronization policies� do not arise in the same �inevitable� way�
Rather than commit to a particular high�level object model in Pict� we have chosen to provide a framework
for experimenting with a variety of designs� Pict�s type system incorporates a number of powerful constructs�
such as higher�order subtyping� especially for this purpose� Preliminary experiments with concurrent objects
in Pict are described in �PT���� Some more sophisticated proposals are described in �NSL����

Can the ��calculus be implemented e�ciently�

Pict�s high�level language is de	ned by means of a translation into a ��calculus core language� This
is a very useful style of de	nition as far as the compilation of Pict is concerned� since it identi	es a very
small calculus which is su
cient to implement the whole of Pict� The operational semantics of ��calculus�
plus a number well�known program equivalences� give rise a number of easy to implement �and provably
correct� program optimisations� many of which generalise optimisations already commonly used in compilers
for functional languages� Our Pict compiler does all of its static analysis of programs� optimisation� and
code generation using a ��calculus core language�

However� encoding a high�level language into a low�level language such as ��calculus does run the risk of
losing useful information about a program� Fortunately� we have so far been able to regain the information
we need by exploiting explicit type information �in particular� we make heavy use of type information to
optimise the implementation of communication��

Functional code� when compiled by our Pict compiler comes out looking very like the code generating
by a continuation�passing compiler� We compile to C for portability and easy inter�operability with existing
program libraries� though this does have a signi	cant cost in e
ciency for the compiled code �Tarditi�
Archarya� and Lee �TAL��� report that when they modi	ed the New Jersey SML compiler so that it generated
C code� it produced code which ran approximately twice as slow as code produced by the native code
generator��

Very simple comparisons of the code produced by Pict and New Jersey SML �Tur��� indicate that func�
tional code compiled by Pict runs approximately six times slower than that produced by New Jersey SML�
We 	nd this quite encouraging� since the Pict compiler has had very little tuning and lacks a number of
important optimisations �in particular� the representation of closures in Pict is not yet optimised in any
way�� Moreover� New Jersey SML has the advantage of compiling to native code �the code we generate is
very similar to the code generated by Tarditi� Archarya� and Lee�s sml�c compiler� so we might reasonably
expect to gain a factor of two if we produced native code instead of C code� which would leave us within a
factor of three of the performance of New Jersey SML��

To give an idea of how fast our channel�based communication primitives are� we compared the performance
of the Pict nqueens program with an equivalent CML program which uses CML�s channel primitives to
implement the result channels used in Pict �Tur���� The CML program ran almost four times slower than
Pict� This is not to say that CML programs in general run four times slower than Pict� since CML programs
typically consist of large amounts of SML code� which runs faster than Pict� However� the comparison does
give an idea of the raw performance of Pict�s communication primitives� �Especially since the CML program
had the advantage of being compiled to native code��

��
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Can we design a practical type system for the ��calculus combining subtyping and
higher�order polymorphism�

The Pict type system integrates a number of well�studied ideas� Milner�s simple sorting discipline for
channels �Mil���� polymorphic channels �Tur���� higher�order polymorphism �Gir���� input!output modali�
ties �PS���� higher�order subtyping �Car��� Mit��� PT��� HP��� PS���� and recursive types �MPS��� AC����
However� the key to obtaining a workable type system for Pict was the development of a practical type in�
ference algorithm� Pict�s partial type inference algorithm is surprisingly simple and easy to understand� but
yet our experience has been that it gives very acceptable results� One of the reasons partial type inference
works well in Pict is that many programs already contain explicit type annotations �for the purposes of
documentation�� It turns out that in many cases these explicit type annotations are su
cient to uniquely
determine the types which should be assigned to all other bound variables�

In the design of Pict�s type system we gave up the goal of complete type inference in preference for more
powerful type�theoretic constructs� For example� Pict�s impredicative polymorphism directly supports useful
features such as 	rst�class existential types� which are not expressible in simpler� predictive� polymorphic type
systems� Thus� without any further extensions to the language� Pict programmers can structure programs
using abstract datatypes �this facility is used extensively throughout Pict�s standard libraries�� We are
working on modest extensions to Pict�s type system which will enable better  programming in the large� but�
unlike Standard ML� will not require a separate module�level language� For instance� we hope to extend
Pict�s treatment of existential types to account for type sharing �using techniques similar to those proposed
by Leroy �Ler��� and Harper and Lillibridge �HL�����
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Functional Programming� ����
�������� October 
���� Previous versions appeared in the Symposium on
Theoretical Aspects of Computer Science� 
���� �pages ��
����� and� under the title �An Abstract View
of Objects and Subtyping �Preliminary Report��� as University of Edinburgh� LFCS technical report
ECS�LFCS�������� 
����

�HT�
	 Kohei Honda and Mario Tokoro� An object calculus for asynchronous communication� In Pierre America�
editor� Proceedings of the European Conference on Object�Oriented Programming �ECOOP�� volume �
�
of Lecture Notes in Computer Science� Springer�Verlag� Berlin� Heidelberg� New York� Tokyo� 
��
�

�HY��	 Kohei Honda and Nobuko Yoshida� Combinatory representation of mobile processes� In Principles of
Programming Languages �POPL�� pages �������� January 
����

�JGF��	 Simon Peyton Jones� Andrew Gordon� and Sigbjorn Finne� Concurrent Haskell� In Conference Record
of the �
rd ACM SIGPLAN�SIGACT Symposium on Principles of Programming Languages �POPL	
���
pages �������� St� Petersburg� Florida� January �
���� 
���� ACM Press�

�Jon��	 Cli� B� Jones� A pi�calculus semantics for an object�based design notation� In E� Best� editor� Proceedings
of CONCUR	

� LNCS �
�� pages 
���
��� Springer�Verlag� 
����

�Kob��	 Naoki Kobayashi� Concurrent Linear Logic Programming� PhD thesis� Department of Information Science�
University of Tokyo� April 
����

�KPT��	 Naoki Kobayashi� Benjamin C� Pierce� and David N� Turner� Linearity and the pi�calculus� In Principles
of Programming Languages� 
����

�KY��	 Naoki Kobayashi and Akinori Yonezawa� Type�theoretic foundations for concurrent object�oriented pro�
gramming� In Proceedings of ACM SIGPLAN Conference on Object�Oriented Programming Systems�
Languages� and Applications �OOPSLA	
��� pages �
���� 
����

�Ler��	 Xavier Leroy� Applicative functors and fully transparent higher�order modules� In Proceedings of the
Twenty�Second ACM Symposium on Principles of Programming Languages �POPL�� Portland� Oregon�
pages 
���
��� San Francisco� California� January 
����

�Mat�
	 David Matthews� A distributed concurrent implementation of Standard ML� Technical Report ECS�
LFCS��
�
��� University of Edinburgh� August 
��
�

�Mil��	 Robin Milner� Functions as processes� Research Report 

��� INRIA� So�a Antipolis� 
���� Final version
in Journal of Mathematical Structures in Computer Science ����


��
�
� 
����

�Mil�
	 Robin Milner� The polyadic ��calculus
 a tutorial� Technical Report ECS�LFCS��
�
��� Laboratory
for Foundations of Computer Science� Department of Computer Science� University of Edinburgh� UK�
October 
��
� Appeared in Proceedings of the International Summer School on Logic and Algebra of
Speci�cation� Marktoberdorf� August 
��
� Reprinted in Logic and Algebra of Speci�cation� ed� F� L�
Bauer� W� Brauer� and H� Schwichtenberg� Springer�Verlag� 
����

��
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�Mit��	 John C� Mitchell� Toward a typed foundation for method specialization and inheritance� In Proceedings of
the ��th ACM Symposium on Principles of Programming Languages� pages 
���
��� January 
���� Also
in Carl A� Gunter and John C� Mitchell� editors� Theoretical Aspects of Object�Oriented Programming�
Types� Semantics� and Language Design �MIT Press� 
�����

�MP��	 John Mitchell and Gordon Plotkin� Abstract types have existential type� ACM Transactions on Pro�
gramming Languages and Systems� 
����� July 
����

�MPS��	 David MacQueen� Gordon Plotkin� and Ravi Sethi� An ideal model for recursive polymorphic types�
Information and Control� �

���
��� 
����

�MPW��	 R� Milner� J� Parrow� and D� Walker� A calculus of mobile processes �Parts I and II�� Information and
Computation� 
��

���� 
����

�Nie��	 Oscar Nierstrasz� Regular types for active objects� In O� Nierstrasz and D� Tsichritzis� editors� Object�
Oriented Software Composition� pages ���
�
� Prentice Hall� 
���� Earlier version in proceedings of
OOPSLA 	

� published in ACM Sigplan Notices� ���
��� October 
���� pp� 
�
��

�NP��	 Uwe Nestmann and Benjamin C� Pierce� Decoding choice encodings� In Proceedings of CONCUR 	
��
August 
����

�NSL��	 Oscar Nierstrasz� Jean�Guy Schneider� and Markus Lumpe� Formalizing composable software systems �
a research agenda� In Formal Methods in Open� Object�Based Distributed Systems �FMOODS 	
���
February 
����

�Pie��	 Benjamin C� Pierce� Programming in the pi�calculus
 A tutorial introduction to Pict� Available electron�
ically� 
����

�PRT��	 Benjamin C� Pierce� Didier R�emy� and David N� Turner� A typed higher�order programming language
based on the pi�calculus� In Workshop on Type Theory and its Application to Computer Systems� Kyoto
University� July 
����

�PS��	 Benjamin Pierce and Davide Sangiorgi� Typing and subtyping for mobile processes� In Logic in Computer
Science� 
���� Full version in Mathematical Structures in Computer Science� Vol� �� No� �� 
����

�PS��	 Benjamin Pierce and Martin Ste�en� Higher�order subtyping� Theoretical Computer Science� 
���� To
appear� A preliminary version appeared in IFIP Working Conference on Programming Concepts� Methods
and Calculi �PROCOMET�� June 
���� and as University of Edinburgh technical report ECS�LFCS����
��� and Universit�at Erlangen�N�urnberg Interner Bericht IMMD���
���� January 
����

�PT��	 Benjamin C� Pierce and David N� Turner� Simple type�theoretic foundations for object�oriented program�
ming� Journal of Functional Programming� ����
�������� April 
���� A preliminary version appeared
in Principles of Programming Languages� 
���� and as University of Edinburgh technical report ECS�
LFCS�������� under the title �Object�Oriented Programming Without Recursive Types��

�PT��	 Benjamin C� Pierce and David N� Turner� Concurrent objects in a process calculus� In Takayasu Ito and
Akinori Yonezawa� editors� Theory and Practice of Parallel Programming �TPPP�� Sendai� Japan �Nov�
�

��� number ��� in Lecture Notes in Computer Science� pages 
����
�� Springer�Verlag� April 
����

�PT��	 Benjamin C� Pierce and David N� Turner� Pict language de�nition� Draft report� available electronically
as part of the Pict distribution� 
����

�Rep�
	 John Reppy� CML
 A higher�order concurrent language� In Programming Language Design and Imple�
mentation� pages �������� SIGPLAN� ACM� June 
��
�

�Rey��	 John Reynolds� Towards a theory of type structure� In Proc� Colloque sur la Programmation� pages
�������� New York� 
���� Springer�Verlag LNCS 
��

�San��	 Davide Sangiorgi� Expressing Mobility in Process Algebras� First�Order and Higher�Order Paradigms�
PhD thesis� Department of Computer Science� University of Edinburgh� 
����

�San��	 Davide Sangiorgi� An investigation into functions as processes� In Proc� Ninth International Conference
on the Mathematical Foundations of Programming Semantics �MFPS	

�� volume ��� of Lecture Notes
in Computer Science� pages 
���
��� Springer Verlag� 
����

�San��	 Davide Sangiorgi� The lazy lambda calculus in a concurrency scenario� Information and Computation�



�
�

���
��� 
����

�Sew��	 Peter Sewell� Observations on Pict� a nondeterministic programming language� Manuscript� 
����

�Smo��	 Gert Smolka� A Foundation for Concurrent Constraint Programming� In Constraints in Computational
Logics� volume ��� of Lecture Notes in Computer Science� Munich� Germany� September 
���� Invited
Talk�

��
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�Smo��	 Gert Smolka� The Oz programming model� In Jan van Leeuwen� editor� Computer Science Today� Lecture
Notes in Computer Science� vol� 
���� pages �������� Springer�Verlag� Berlin� 
����

�TAL��	 David Tarditi� Anurag Acharya� and Peter Lee� No assembly required
 Compiling Standard ML to C�
Technical Report CMU�CS����
��� School of Computer Science� Carnegie Mellon University� November

����

�Tur��	 David N� Turner� The Polymorphic Pi�calulus� Theory and Implementation� PhD thesis� University of
Edinburgh� 
����

�Vas��	 Vasco T� Vasconcelos� Typed concurrent objects� In Proceedings of the Eighth European Conference
on Object�Oriented Programming �ECOOP�� volume ��
 of Lecture Notes in Computer Science� pages

���

�� Springer�Verlag� July 
����

�VH��	 Vasco T� Vasconcelos and Kohei Honda� Principal typing schemes in a polyadic pi�calculus� In Proceedings
of CONCUR 	

� July 
���� Also available as Keio University Report CS��������

�Wal��	 David Walker� Objects in the ��calculus� Information and Computation� 

�
������
� 
����

��


